Matematika dalam Mechanical Engineering
Mengapa mechanical engineering memerlukan matematika? Sebetulnya, pertanyaan serupa adalah: mengapa fisika membutuhkan matematika? Ya, matematika adalah satu-satunya alat untuk bisa mengukur sesuatu secara kuantitatif (ter-angka-kan). Konsep-konsep dalam fisika sebetulnya adalah sekumpulan formulai mengenai sunnatullah fil kaun, misalnya hukum gravitasi, hukum kelembaman, hukum kekekalan energi, dsb. Nah, agar konsep-konsep tersebut bisa dituangkan dalam rumusan yang bisa diukur secara kuantitatif, dibutuhkanlah matematika. Sehingga, muncullah konsep-konsep fisika itu dalam bentuk rumus-rumus matematika.
Dari sinilah kita memahami bahwa seseorang yang mendalami engineering harus bagus dalam matematika. Berbicara tentang matematika itu sendiri, ia terbagi menjadi tiga cabang utama: aljabar (algebra), geometry, dan kalkulus. Wikipedia mendefinisikan ketiga cabang matematika ini dengan sangat baik: “Algebra is the study of operations and their application to solving equations, geometry is the study of shape, and calculus is the study of change.”
Ilmu matematika yang pertama kali harus dikuasai adalah aljabar, termasuk didalamnya aljabar matriks. Kalau sudah menguasai aljabar, seseorang bisa belajar geometri dan atau kalkulus.
Dalam engineering, kalkulus adalah tool yang “wajib” dikuasai, karena hampir semua permasalahan dalam engineering dirumuskan dalam fungsi-fungsi kalkulus. Tidak terkecuali mechanical engineering. Dalam mechanical enginnering, hampir semua permasalahan mekanika baik itu statika, kinematika, maupun dinamika dirumuskan dalam fungsi-fungsi kalkulus.
Sekarang saya akan menggambarkan bagaimana matematika, khususnya kalkulus, berperan dalam mechanical engineering. Pertama-tama, suatu permasalahan dikenali dan diidentifikasi. Selanjutnya, yang harus dilakukan adalah memodelkan permasalahan tersebut dalam model matematika. Hanya dengan cara inilah, permasalahan tersebut nanti akan bisa dicari solusinya secara tepat dan terukur.
Permasalahan dalam dunia riil selalu kompleks. Variabel-variabel yang ada selalu banyak. Karena itulah, dalam proses pembelajaran biasanya variabel-variabel dipersempit (dikurangi). Ini sebenarnya dilakukan dengan melakukan asumsi-asumsi pada variabel-variabel yang “diabaikan”. Dengan mempersempit (mengurangi) variabel, model matematika yang dihasilkan akan lebih sederhana, sehingga lebih mudah dipecahkan, bahkan dengan matematika yang sederhana.
Namun dalam kenyataannya, sekali lagi, variabel-variabel dalam permasalahan riil sangatlah banyak. Akibatnya, model matematika yang dihasilkan pun menjadi kompleks. Tantangannya kemudian adalah bagaimana menyelesaikan (mencari solusi) model matematika yang kompleks tadi.
Sebetulnya, cara paling eksak untuk menyelesaikan suatu model matematika adalah penyelesaian secara analitis. Ini artinya, kita ambil kertas dan bolpoin, lalu kita selesaikan model matematika tersebut dengan mengutak-atik fungsi-fungsi yang ada, berdasarkan rumus-rumus matematika yang telah ada. Namun jika suatu model matematika sudah cukup kompleks, akan sangat sulit mencari penyelesaian akhirnya (angka terakhir), kecuali jika Anda seorang profesor matematika yang kepalanya botak total tanpa ada rambut yang tersisa dan 24 jam pekerjaannya hanya utak-atik rumus he he.
Dalam kondisi seperti inilah, penyelesaian secara numerik menjadi pilihan terbaik. Hanya saja, penyelesaian numerik sebetulnya adalah suatu aproksimasi. Akan ada sedikit error dari nilai eksak yang sebenarnya, namun berbagai metode numerik telah ditemukan untuk memperkecil error tersebut sekecil-kecilnya sehingga besarnya error menjadi “tidak signifikan”.
Kelebihan yang paling menonjol dari metode numerik ini adalah: bisa mengeksploitasi “kecerdasan” komputer. Memang kalau seluruh hitung-hitungan numerik dituliskan diatas kertas, bisa menghabiskan segudang kertas. Dan akan lama kalau dikerjakan secara manual. Namun dengan komputer, semua proses menghitung itu bisa dikerjakan dengan sangat cepat.
Karena metode numerik ini adalah metode yang mengeksploitasi “kecerdasan” komputer, maka muncullah berbagai macam software untuk penyelesaian numerik. Daftarnya lihat disini.
Kembali kepada model matematika, dalam mechanical engineering sangat sering dijumpai model matematika berupa persamaan diferensial. Lebih spesifik lagi, persamaan diferensial parsial (PDE). Untuk menyelesaikan PDE secara numerik, telah ditemukan berbagai macam metode, antara lain: Finite Difference Method (FDM), Finite Volume Method (FVM), Finite Element Method (FEM), Analytic Element Method (AEM), dan Boundary Element Method (BEM).
Untuk FEM, disini bisa dilihat daftar berbagai macam software-nya.